
研究の背景

研究の目的

以上の性能を有するアクチュエータの提供を目指す

超音波モータの特徴

必要な性能

- ■高分解能
- ■非磁性
- 超高真空環境で 駆動可能

真空チャンバに取り付けた状態

超音波モータの特徴

超音波振動による摩擦駆動

- ■非磁性
- ■位置分解能が高い
- ■停止時に保持力

金属部品で構成

- ■真空中でのアウトガス少
- ■ベーク処理に耐える

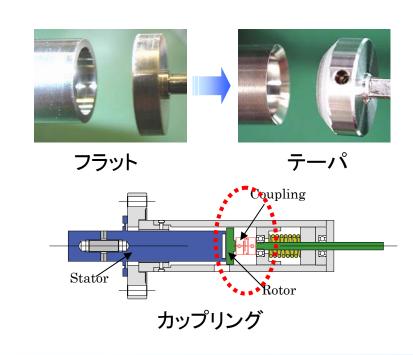
真空環境に適応

超音波モータの特徴は 超高真空対応回転導入器に適している

構造および原理

- 1.圧電素子によって位置と位相が90°ずれた定在波を励振
- 2.振動子がたわみ運動して端面上に1波長進行波が起こる
- 3.進行波を受けて振動しに押し付けられた回転子が回転する

MOVIEはこちら


これまでに得られた成果

目標

- ■容器内圧力低減
- -駆動時間延長
- -これまでの取り組み-構造の検討
 - ■駆動面形状 フラット→テーパへ変更
 - ▶カップリングの挿入

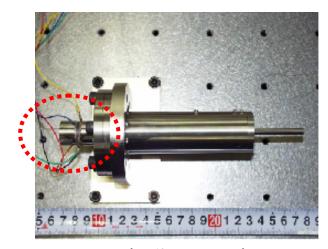
回転子材料の検討

- ■樹脂
- ■セラミック
- ■金属

成果

- ■駆動中圧力:5.5×10-8Pa
 - → ◎超高真空環境下で非磁性駆動
- ■駆動時間:130時間
 - → ×さらなる向上が必要

現在の課題


課題

- ■駆動時間延長
- ■制御
- ■容器内圧力低減

寿命制限要因

- ■振動子-回転子接触面の 磨耗
- ■圧電素子破損

実用に耐える寿命として 連続駆動時間1000時間以上を目指す

回転導入器写真

はじめに、 圧電素子の長寿命化を目指す

課題への取り組み

構造の検討

圧電素子分割

- ■素子寿命25倍以上
- ■駆動性能維持
- ■周波数特性改善

副次的に

- ■さらなる駆動時間向上
- ■容器内圧力低減
 - の可能性が示された

今後は、 駆動に適した 条件を探る

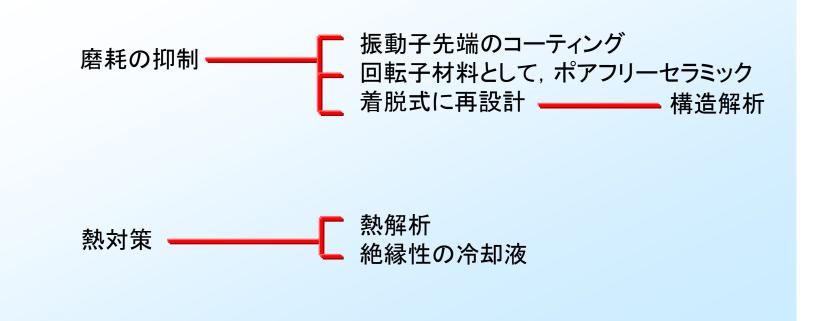
制御

電子回路によるPLL制御

- ■ワンタッチで回転動作
- ■周波数の変動に自動追尾

本年度の目標

目標


- -駆動時間1000時間超
- ■10⁻⁸Pa台で連続駆動

駆動時間・容器内圧力を制限する要因

- ■駆動面(振動子-回転子接触面)の磨耗
- ■発熱によるアウトガス

今後の取り組み

駆動時間延長 容器内圧力低減

